
TYPE Original Research

PUBLISHED 28 September 2022

DOI 10.3389/fpsyg.2022.997498

OPEN ACCESS

EDITED BY

Yoshiyuki Ueda,

Kyoto University, Japan

REVIEWED BY

Yuki Murai,

National Institute of Information and

Communications Technology, Japan

Atsunobu Suzuki,

The University of Tokyo, Japan

*CORRESPONDENCE

Daniel N. Albohn

daniel.albohn@chicagobooth.edu

SPECIALTY SECTION

This article was submitted to

Cognitive Science,

a section of the journal

Frontiers in Psychology

RECEIVED 19 July 2022

ACCEPTED 26 August 2022

PUBLISHED 28 September 2022

CITATION

Albohn DN, Uddenberg S and

Todorov A (2022) A data-driven,

hyper-realistic method for visualizing

individual mental representations of

faces. Front. Psychol. 13:997498.

doi: 10.3389/fpsyg.2022.997498

COPYRIGHT

© 2022 Albohn, Uddenberg and

Todorov. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

A data-driven, hyper-realistic
method for visualizing individual
mental representations of faces

Daniel N. Albohn*, Stefan Uddenberg and Alexander Todorov

Booth School of Business, The University of Chicago, Chicago, IL, United States

Research in person and face perception has broadly focused on group-level

consensus that individuals hold when making judgments of others (e.g.,

“X type of face looks trustworthy”). However, a growing body of research

demonstrates that individual variation is larger than shared, stimulus-level

variation for many social trait judgments. Despite this insight, little research

to date has focused on building and explaining individual models of face

perception. Studies and methodologies that have examined individual models

are limited in what visualizations they can reliably produce to either noisy

and blurry or computer avatar representations. Methods that produce

low-fidelity visual representations inhibit generalizability by being clearly

computer manipulated and produced. In the present work, we introduce

a novel paradigm to visualize individual models of face judgments by

leveraging state-of-the-art computer vision methods. Our proposed method

can produce a set of photorealistic face images that correspond to an

individual’s mental representation of a specific attribute across a variety of

attribute intensities. We provide a proof-of-concept study which examines

perceived trustworthiness/untrustworthiness and masculinity/femininity. We

close with a discussion of future work to substantiate our proposed method.
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Introduction

What types of faces do individuals draw to mind when they think of a “leader”?

A “criminal”? A “thinker”? Understanding the content and downstream consequences

of such visual stereotypes has been an area of active study within the field of

social perception. However, the dominant approach to characterizing judgments

derived from faces and facial attributes involves drawing conclusions based on

aggregated measures collected from disparate observers. For example, one highly

replicable finding is that neutral faces that have more feminine attributes (e.g.,

lighter skin, rounded jawline) and appear happier are judged as more trustworthy

(see, e.g., Oosterhof and Todorov, 2008; Jaeger and Jones, 2021). However, this

observation is based on averaged judgments across both faces and raters (i.e.,

participants). That is, on average, any given face with feminine and happy-like

features will likely be judged by a given individual as trustworthy. However, not every

feminine/smiling face is necessarily seen as trustworthy. Similarly, not every individual

agrees on what a “trustworthy” face might look like. What one person may view as
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“trustworthy” another might view as “gullible” or perhaps

“intelligent.” These kinds of idiosyncrasies in face judgment are

as numerous as the number of personality traits an individual

can judge.

In the present work, we present a rationale for parsing,

analyzing, and interpreting both participant-level (i.e.,

idiosyncratic) and stimulus-level (i.e., shared) contributions to

social judgments of faces. First, we review literature that suggests

idiosyncratic variance is both pervasive and meaningful in social

trait judgments. However, we show that its contribution to social

judgments depends on the type of judgment. Specifically, we

use two types of social judgments: first-order facial judgments

of masculinity and femininity and second-order, more complex

judgments of trustworthiness (which rely on integrating many

different lower-level perceived attributes in faces). While strict

delineation between first- and second-order judgments is

difficult to quantify, in the present work we define first-order

judgments as those that have clear phenotypic qualities,

such as sexually dimorphic features (e.g., jaw shape, face

roundness), eye size, and overt or incidental resemblance to

emotion expressions. These judgments are likely to have greater

inter-rater agreement due to the physically observable features.

Similarly, we define second-order judgments as more abstract

judgments (e.g., trustworthiness) that are influenced by first-

order judgments. Second-order judgments typically have lower

inter-rater agreement. For example, the perceived second-order

judgment of “babyfacedness” has been shown to be influenced by

first-order judgments of face roundness, eye size, and incidental

facial resemblance to fear expressions (Marsh et al., 2005;

Zebrowitz, 2017). Here, we show that judgments of masculinity

and femininity more closely align with our definition of first-

order judgments, while judgments of trustworthiness align with

what we define as second-order judgments.

Second, we review advances in machine learning and

computer vision that can aid in capturing both idiosyncratic

and shared variance in face judgments. Third, we introduce

a novel, data-driven methodology to visualize idiosyncratic

models of faces utilizing machine learning. Finally, we end

with a proof-of-concept demonstration of our proposed

method. We model idiosyncratic representations of perceived

masculinity/femininity and trustworthiness of faces. Consistent

with the variance component analyses, we find that these

representations are much more similar across individuals

in the case of masculinity/femininity than in the case of

trustworthiness. We conclude with a set of future directions

needed to further validate the proposed method.

Idiosyncratic and shared
contributions to face judgments

Intuitively, two or more individuals are likely to disagree

to some degree on their opinions about the attractiveness,

trustworthiness, or masculinity and femininity of an individual.

Indeed, there is a growing literature on individual preferences

across diverse domains such as abstract art (Leder et al.,

2016; Specker et al., 2020), architecture (Vessel et al., 2018),

dancing (Isik and Vessel, 2019), facial beauty (Hönekopp,

2006; Martinez et al., 2020), voices (Lavan et al., 2020),

and even technical writing and peer reviews (Jirschitzka

et al., 2017). Yet, traditional analyses in person perception

aggregate judgments to focus solely on the “shared”

contributions of preferences that are similar across all

participants. Thus, the majority of past research in face

preferences stands in contrast to emerging evidence on the

importance of idiosyncratic contributions to preference, taste,

and judgments.

Estimating shared and idiosyncratic contributions to

social judgments requires calculating variance components

at three levels of interest: the stimulus, the participant,

and their interaction (Martinez et al., 2020). The stimulus

component represents the “shared” variance that is similar

across all raters in the sample. For example, if every judge

rated all smiling faces as more attractive, this would be

reflected in the stimulus component. In other words, the

“shared” stimulus attribute of smiling accounts for a certain

proportion of the observed variance. On the other hand, the

other two components represent participant-level, idiosyncratic

contributions to judgments. The participant main effect

contributions are idiosyncratic, but are often considered more

ambiguous to interpret. For example, Rater A may judge

the perceived happiness of two faces as numerically different

from Rater B, but both raters could still rank order them

similarly, resulting in mean differences across participants but

identical face rankings. Such a case would be reflected in the

participant main effect variance component, but it is unclear

whether such differences reflect true idiosyncrasies or simply

the fact that different participants interpret the response scale

differently. On the other hand, the participant by stimulus

interaction component is more straightforward to interpret.

This component captures individual ranking preferences for the

stimuli. For example, variance at this level will occur if Rater

A prefers (or gives a higher perceived attribute rating to) one

stimulus over another while Rater B prefers the opposite pairing

(for detailed discussion see Hönekopp, 2006; Martinez et al.,

2020).

In an early investigation on social judgment idiosyncrasies,

Hönekopp (2006) revealed that perceptions of facial

attractiveness were explained by both individual and shared

preferences in taste. Hönekopp first had participants rate

the same faces twice on perceived attractiveness one week

apart. Next, shared and private (i.e., idiosyncratic) taste in

attractiveness was evaluated by determining the proportion

of variance explained by the stimulus face image, the rater,

and the rater by stimulus interaction. Shared, stimulus-level

contributions in taste accounted for approximately 33% of the
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observed variance while private, participant-level contributions

in taste accounted for about 26% to 45% of the observed variance

depending on whether the participant main effect variance was

taken into account. Hönekopp (2006) determined that both

individual- and stimulus-level contributions were important

determinants of attractiveness judgments. Other investigations

have shown that idiosyncratic variance contributions to

attractiveness judgments range from 20 to 40% conservatively

(taking into account participant by stimulus interactions only)

to well over 50% if the more ambiguous participant main effect

variance component is included (Hehman et al., 2017; Martinez

et al., 2020).

Despite increasing evidence that there are large idiosyncratic

contributions to judgments across a variety of domains, the

degree to which there is more idiosyncratic variance over

shared variance is likely graded within these specific domains.

For example, within the domain of facial judgments, low

level, first-order judgments that underlie higher level, second-

order judgments are likely to have higher agreement. First-

order judgments such as those for masculinity, femininity,

skin tone, hair color, face shape, among others are likely to

have more shared agreement since these attributes tend to

be less perceptually ambiguous. In contrast, there is likely

to be less agreement (i.e., more idiosyncratic contributions)

for second-order judgments, such as those for attractiveness,

trustworthiness, and dominance due to highly individualized

preferences for these perceived attributes. In our own work, we

have found evidence for such effects (Albohn, Martinez and

Todorov, in prep). We had participants (N = 99) judge the

femininity, masculinity, or trustworthiness of 120 neutral faces

from the Chicago Face Database (Ma et al., 2015). Next, we

computed the shared and idiosyncratic variance components

following the procedures outlined by Martinez et al. (2020).

When we examined the relative proportion of each type of

variance, we observed different patterns dependent on whether

the judgment was first-order (feminine or masculine) or second-

order (trustworthy) as depicted in Figure 1. Specifically, we

found that shared variance in judgments of facial masculinity

and femininity accounted for approximately 60% of the

observed reliable variance (depicted via the large blue bars

in the left and center panels) but <4% of the reliable

shared variance in judgments of trustworthiness (depicted

via the small blue bar in the right panel). Importantly, this

pattern flips when idiosyncratic contributions are examined.

Idiosyncratic variance accounted for <20% of the variance

for feminine and masculine face judgments (depicted via the

black and yellow bars in the left and center panels) and

around 20–65% of the idiosyncratic variance for trustworthy

judgments (depicted via the black and yellow bars in the right

panel) depending on whether participant main effect variance

components are taken into account. This work aligns with

previous research that has similarly found that trustworthiness

judgments are often more idiosyncratic compared to judgments

for other perceived attributes such as gender and race

(Hehman et al., 2017).

Visualization of individual mental
representations of faces

There exist myriad data-driven methods for visualizing

mental representation of faces (e.g., Gosselin and Schyns, 2001;

Mangini and Biederman, 2004; Oosterhof and Todorov, 2008;

Schyns et al., 2009; Todorov et al., 2011; Zhan et al., 2021).

However, to our knowledge psychophysical reverse correlation

that produces noisy or computer generated avatar images is the

only approach used for visualizing individual representations

of faces (Sekuler et al., 2004; Dotsch and Todorov, 2012; Zhan

et al., 2021). Typical reverse correlation in social perception

overlays base images with random noise to randomly vary

features of those base images (Dotsch et al., 2008). Participants

then complete a forced-choice task whereby they choose which

of two images (overlaid with randomized noise or its inverse)

best represents a perceived target attribute (e.g., “Which face

looks more “threatening?”). Afterwards, a classification image

can be created for each participant by averaging all of the selected

images together. In short, reverse correlation can visualize social

perceptions of individuals by allowing a meaningful construct to

“emerge from the noise.”

Reverse correlation has become extremely popular in social

perception since its inception. Indeed, past work has utilized

reverse correlation to exemplify group averages of ethnic groups

(Dotsch et al., 2008), social groups (Tskhay and Rule, 2015;

Lloyd et al., 2020), facial emotions (Albohn et al., 2019; Albohn

and Adams, 2020), and social categories such as perceived

trustworthiness and dominance (Dotsch and Todorov, 2012).

While many studies utilize reverse correlation for visualizing

higher-level perceived attributes in faces, existing techniques

can be improved considerably by leveraging advances from

computer vision that have occurred in the last decade. Potential

areas of improvement include (1) creating individual-level

(rather than group-level) models of social perception; and (2)

increasing classification image quality. We expand on both of

these points in greater detail below.

Individualized models of social
perception

Most studies utilizing reverse correlation only collect and

report results from classification images averaged together

at the group level. Then, these averaged images are rated

by other samples of participants to confirm that such

group-level classification images appear as intended (e.g., a

“dominant” reverse correlation classification image actually

appears “dominant” to other raters). However, the focus on
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FIGURE 1

The variance partitioning coe�cients (VPC) for feminine, masculine, and trustworthy judgment ratings across important variance clusters. The

x-axis represents idiosyncratic (participant and participant by stimulus) and shared variance clusters. The y-axis represents the proportion of

observed variance explained by each cluster.

characterizing only group-level images has been shown to

inflate Type I error rates (Cone et al., 2020). To address this

issue, individual classification images can be rated, though

studies utilizing this approach typically still only report group

means aggregated over all participants in the study and not

individual-level effects. While such approaches have revealed

important insights into social perception, they reveal little

about the idiosyncrasies of social judgments. For example, it is

possible that an individual’s classification image of a “dominant”

face could accurately visualize their mental representation

of perceived facial “dominance,” yet simultaneously fail to

correspond to a group-level consensus representation of

perceived “dominance.” In such cases, the individual’s visualized

mental representation would likely either be discarded as an

outlier or ignored.

Improved image quality

As noted earlier, the reverse correlation paradigm is, by its

very nature, noisy. Such experiments require the application of

carefully calibrated image-based noise to some base image in

order to generate the distinct stimuli participants must choose

between on each trial. Consequently, the resultant classification

images — created by averaging across participant-selected noise

patterns— are low fidelity. The images look noisy, pixelated, and

blurry, or altogether computer-generated. Early visual reverse

correlation techniques utilized stimuli that consisted solely of

randomized noise (e.g., Gosselin and Schyns, 2003). Such noise-

only methods typically required each participant to complete

thousands of trials in order for meaningful data to emerge.

In light of this difficulty, later iterations of visual reverse

correlation made use of a blurred base image, on top of which

the noise was applied (Mangini and Biederman, 2004; Dotsch

et al., 2008). This helps guide visual classification and reduces

the number of required trials by an order of magnitude —

from thousands to several hundred. However, the resultant

classification images can only be as clear as the images used in

their creation. Even when randomized noise is superimposed

over a high-fidelity base image, the output classification image

is still necessarily noisy and blurry in appearance. Classification

images are prima facie computer-manipulated and participants

are unlikely to believe the images represent “real” faces, although

human judges can still consensually discern gross anatomical

features (e.g., mouth, eyes, hair, brows, etc), some social

categories (e.g., race, gender/sex), and face luminance from

noisy classification images.

A promising way forward

Addressing the existing limitations of psychophysical

reverse correlation would allow for several important avenues

of exploration in future research. First, a reverse correlation

approach that yields photorealistic face images would have high

face validity. This is because participants would likely be unable

to tell that the images they are categorizing (or rating) are

synthetic, leading to greater ecological validity. For example,

prior work has demonstrated that judging the trustworthiness

of computer-generated faces (as compared to real faces) results

in weaker observed effects (Balas and Pacella, 2017). Relatedly,

computer-generated and artificial faces have been shown to be
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more difficult to process and remember compared to real faces

(Balas and Pacella, 2017; Gaither et al., 2019). Therefore, it is

likely that there is less cognitive burden for rating photorealistic

face images compared to pixelated images or avatars.

Second, a higher-fidelity approach to reverse correlation

would allow for easier and more effective integration with

other computational methods in the social sciences. Traditional

approaches produce noisy or low-fidelity classification images

which are not discernible by pipelines that use computer vision

to automatically calculate structural and surface properties of

the face in addition to other metrics that may be of interest to

researchers. In contrast, real face images can often be substituted

one-for-one with photorealistic computer generated face images

in algorithms that can automatically detect or estimate facial

landmarks, self-identified demographic properties (e.g., race,

age, sex/gender), and emotional expression, among other such

perceived attributes. In summary, more realistic classification

images are ideal not only for human observers to make high-

quality judgments, but also for algorithms that can aid in

extracting and interpreting lower-level face metrics.

Advances in machine learning
applications

One of the most important recent advances to computer

vision has been the generation of photorealistic synthetic images.

Generative adversarial networks (GAN) accomplish this by

pitting two machine learning models in “competition” against

each other with the goal of creating better and better output.

A generator model produces synthetic output data (often an

image) in an attempt to “fool” a separate discriminator model

simultaneously trained to discern “real” from “synthetic” data

(Goodfellow et al., 2014). Generative adversarial networks

have been used to create a variety of image classes, ranging

from faces to house facades, cars, and animals, among many

others. A generative model learns to produce new images

by dynamically updating its output based on whether or not

the discriminator model can tell whether its output is a real

image or a generated image. Similarly, the discriminator model

dynamically improves its performance using the feedback it

receives from the generator model.

One GAN that has received considerable attention and

research is StyleGAN, a machine learning model capable of

producing different types of images at high resolution that

are nearly indistinguishable from real world photos (Karras

et al., 2018, 2020, 2021). Of particular interest here, StyleGAN

has been able to generate human faces with incredible

fidelity and precision, mimicking real-world face photographs

while also being able to construct new face images of non-

existent individuals.

In addition to creating high resolution output, StyleGAN

has also proven to be reliable in manipulating faces along a

number of dimensions of psychological interest. For example,

researchers were able to identify where in the StyleGAN latent

space demographic attributes such as age and sex/gender exist.

Identifying latent directions for such attributes then allows for

any images generated to be moved along those directions and

thereby manipulated along age (young to old) or sex/gender

(perceived male to perceived female), or both (Shen et al., 2020).

There is nothing limiting the discovery of latent directions

within the latent space to such (first-order) demographic

features. For example, one recent paper applied modeling

techniques previously used for characterizing representations

of psychological perceived attributes in 3D computer-generated

faces (e.g., Oosterhof and Todorov, 2008) to the StyleGAN2

latent space (Peterson et al., 2022). By collecting over 1

million judgments of 1,004 synthetic faces from over 4,150

participants, the researchers visualized 34 perceived attribute

dimensions. These dimensions included such first-order judged

dimensions as perceived “masculinity,” as well as second-order

judged dimensions such as perceived “trustworthiness.” These

perceived dimensions in particular were able to be modeled

with great fidelity, owing to the high inter-rater reliability of

participants’ judgments. The results are best appreciated with

a demonstration: Figure 2 depicts transformations of these two

perceived dimensions applied to an averaged neutral face (itself

the average of almost 2,500 neutral faces collected from various

extant stimulus sets, and described inmore detail in theMethods

section below).

To our knowledge, this approach represents the state

of the art for group-level modeling of social perception in

faces (Peterson et al., 2022). However, this set of studies was

explicitly designed to characterize the mental representations of

faces in the general (online) population and could not model

the idiosyncratic representations of individual participants. In

principle, the same approach could capture such individualized

models simply via “scaling up” data collection — by asking

a given participant to contribute over a thousand judgments

per perceived attribute of interest, it should be possible

to characterize their idiosyncratic visual representations. In

practice, however, this would prove to be time consuming to

the participant, costly to the experimenter, and potentially self-

defeating by nature of its greater scale; the approach would likely

yield lower and lower quality data as the experiment progresses.

Ideally, modeling such perceived dimensions or attributes in

face space would not require thousands of trials from each

participant. Here, we have developed one promising approach

to do so that requires only a few hundred trials, and combines

advances in GAN-based image generation with the previously

discussed psychophysical reverse correlation techniques.

While our work relies on a particular type of GAN for the

generation and transformation of faces, the field of machine

learning continues to rapidly advance and new methods emerge

regularly. Recently, research groups from companies such as

OpenAI (Ramesh et al., 2022) and Google (Saharia et al., 2022)
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FIGURE 2

An average of 2,484 neutral faces projected into the StyleGAN2 latent space and transformed along dimensions of perceived “trustworthiness”

and “masculinity.” These dimensions were modeled using average ratings for 1,004 faces each, collected from a general online participant

population (Peterson et al., 2022). The faces along each step of the group-level continua are highly realistic and evoke vivid impressions of the

transformed perceived attribute.

have created especially powerful generative diffusion models

(DALL-E 2 and Imagen, respectively) via a technique known as

Contrastive-Language-Image-Pretraining (CLIP; Radford et al.,

2021). Among other things, these models allow for the creation

of arbitrary images from text prompts, which can themselves

be quite descriptive (e.g., “a racoon detective in New York City

wearing a trench coat under a street light.”). In addition, it is

possible to quickly generate many variants of a given image, or

to edit the content of an image by applying a mask to an area of

the image and asking for a desired change with further text (e.g.,

“add a bed” to a masked area of a scene, which will then be filled

with a bed). The availability of such models to the general public

is currently limited for various reasons (including concerns of

potential abuse by unethical actors) but may prove enormously

useful to the broader psychological research community, both

for stimulus generation and analysis/exploration of participant

data. It is worth noting that although the human faces generated

by these types of models are currently not as realistic as those

generated by the likes of StyleGAN, it seems likely that they will

close the gap in the months to come; future work should explore

the utility of such techniques, as they may allow for even more

diverse and naturalistic stimuli.

Summary and overview

To summarize the arguments above, typical research in

person perception analyzes mental constructs of interest by

aggregating over both stimuli and individual participant raters.

As such, reported results are only interpretable at the highest

group level (e.g., on average a given face image is viewed

by a typical participant as “trustworthy”). While aggregated

results are informative, emerging research suggests that within

person perception a large portion of the variance is attributable

to idiosyncratic differences in raters, particularly for complex

perceived attributes such as trustworthiness.

Despite both increased attention to idiosyncratic

contributions to social perceptions and advances in technology,

there is still no reliable, high-fidelity method for visually

inspecting individual mental representations of perceived

personality attributes. In the present work, we introduce

a novel, data-driven method for visualizing hyper-realistic

mental representations of social judgments of perceived facial

attributes. To accomplish this, we leverage state-of-the-art

machine learning models to generate manipulable, highly

realistic faces.

We first formally introduce our proposed methodology

and then apply it to a small proof-of-concept study. Our

main goal is to show that our procedure can visually capture

individual social judgments in a predictable manner. For

our initial investigation, we utilized both a first-order social

judgment (“feminine/masculine”) and a second-order social

judgment (“trustworthy”). The two judgments were selected

intentionally to visualize attributes that should theoretically vary

with respect to the shared and idiosyncratic contributions to

judgments (see Figure 1). More specifically, while we predicted

that all individual mental representations would be idiosyncratic

to some degree, we also predicted that first-order social

judgments (i.e., feminine/masculine) would vary less across

individuals compared with second-order social judgments (i.e.,

trustworthy). This prediction aligns with previous work on

shared and idiosyncratic contributions to social judgments.

Initial proof-of-concept study

Methods

The proposed methodology for our hyper-realistic

visualization procedure loosely follows that of a typical

psychophysical reverse correlation procedure (Dotsch and

Todorov, 2012). However, there are several major differences
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whereby we leverage state-of-the-art technical innovations.

Specifically, our methodological procedure consists of four

steps: (1) image inversion; (2) stimulus creation; (3) stimulus

selection (by participants); and (4) stimulus analysis (i.e.,

classification image creation). In what follows, we first briefly

introduce each of our methodological steps and then detail the

results from a proof-of-concept investigation using our method.

Step 1: Image inversion

The first step consists of inverting a set of faces into the

StyleGAN2 latent space. In short, GAN inversion is a process

whereby a real face image is reconstructed (located) within a

pre-trained GAN latent space (Xia et al., 2022). A successful

inversion results in an image that is photorealistic, similar in

appearance to the original image, and editable (i.e., maintains

the same characteristics of the GAN latent space into which it

was inverted so that attributes present in the latent space can be

applied to the inverted image). Inverting an image results in a

18×512 matrix of numeric values that represents that face in the

StyleGAN2 latent space.

We inverted 2,484 neutral faces from various available

databases into the StyleGAN2 latent space using a modified

VGG encoder adapted by Peterson et al. (2022). The neutral

faces were taken from several face databases: the Chicago

Face Database (Ma et al., 2015), FACES (Ebner et al., 2010),

NIMSTIM (Tottenham et al., 2009), RAFD (Langner et al.,

2010), Face Database (Minear and Park, 2004), Face Research

Set London (DeBruine and Jones, 2017), FERET (Phillips

et al., 2000), and RADIATE (Conley et al., 2018) image

sets, as well as a number of internal face resources. We

focused on inverting real neutral face images because the

original StyleGAN2 latent space is oversaturated with smiling

faces due to the nature of the original training data (Karras

et al., 2020). An overrepresentation of smiling faces (or any

other type of face/attribute) is undesirable for obtaining an

accurate classification image (i.e., individual face prototype or

representation). In our tests, an oversampling of smiling faces

in the image pool shown to participants resulted in classification

images that also overrepresented “smiley” attributes.

Step 2: Stimulus creation

In a typical reverse correlation study, stimuli are created

by overlaying random sinusoidal noise over a standardized,

singular base image. Much like the original reverse correlation

procedure, we sought to create stimuli for our experiment by

randomly generating random neutral faces from the GAN latent

space and adding a small amount of Gaussian noise. To generate

random, unique neutral faces from the latent space, we first

averaged together the latents of a subset of 10 randomly selected

faces from the 2,484 faces inverted into the model latent space in

the previous step. Next, we added a small amount of random

Gaussian noise to the averaged latent to further differentiate

it from the pool of inverted faces. This two-step process was

repeated for each stimulus generated.

We generated 300 neutral face stimuli utilizing the

procedure outlined above. We sampled noise from a Gaussian

distribution with parameters µ = 0 and σ = 0.4 to be added to

each generated average image. Examples of the generated stimuli

with these parameters can be seen in Figure 3B.

Step 3: Stimulus selection

Our stimulus selection procedure involves displaying each

image sequentially to participants and asking them to categorize

the face based on a specific set of attributes designated by

the researcher. In contrast to a standard reverse correlation

procedure, which typically uses a two-alternative forced-choice

design (i.e., selecting between two images), we propose utilizing

a design with three potential categorizations for a single

image–that is, a single image is displayed to the participant along

with three response options. In our task, each of the categories

is as follows: (1) the attribute of interest (e.g., perceived

“trustworthy”), (2) the conceptual opposite of this attribute (e.g.,

perceived “untrustworthy”), and (3) “neutral” (or “neither”).

For example, if a researcher is interested in visualizing an

individual’s mental representation of perceived “masculinity,”

participants would be asked to select whether they think each

face appears “masculine,” “feminine,” or “neither.” The rationale

for including a “neutral” or “neither” category is to obtain an

unbiased, individual starting point within the latent space for

each participant. That is, much like the target categories, what

one individual categorizes as “neither” is likely to differ from

one participant to the next. The participantHeading 3,H3,APA

Level 2s selections are binned into each of the three categories

and used for analysis in the next step.

The current experiment had two sets of

judgments: “trustworthy/untrustworthy/neither” and

“masculine/feminine/neither.” Participants were assigned

to one of the conditions and tasked with categorizing each face

stimulus into one of the three categories. Every participant

saw the same 300 faces generated in the previous step, though

presentation order was randomized between participants.

Step 4: Stimulus analysis

Stimulus analysis involves matrix arithmetic on the latents

of the selected images for each participant. First, the image

latents for each selected category are averaged together. Second,

the latent matrix of the non-target category is subtracted

from the latent matrix of the target category. This process

isolates the unique features attributable to the perceived target

attribute in the latent space. For example, subtracting the average

“untrustworthy” latent matrix from the average “trustworthy”

latent matrix yields a new latent matrix that represents the
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A B

C D

FIGURE 3

Overview of proposed method. (A) Depicts the average of 2,484 neutral faces inverted into the StyleGAN2 latent space. (B) Provides example

neutral face images created by adding random noise to inverted neutral face images. (C) Displays example trials participants saw during

“stimulus selection” (Step 3). (D) Provides an overview of calculating the average directional vector of a target trait applied to an average face to

create a target mental representation.

qualities unique to perceived trustworthiness for a given

participant. The result of this operation represents a directional

vector in the latent space that can be used to sample the mental

representation of the desired perceived attribute at varying levels

of intensity. This is accomplished by adding the directional

vector to the averaged latent matrix of the “neither” selections,

which represents a starting point in the StyleGAN2 latent space

for estimating an individual’s mental model for a particular

trait. Consequently, multiplying the directional vector matrix

by a constant before adding it to the averaged “neither” latent

matrix produces visualizable mental representations for the trait

at different levels of intensity.

More formally, A ∈ R
m x n is an 18 × 512 dimensional

matrix that represents the averaged latents for the faces selected

to represent a target trait. Similarly, B ∈ R
m x n is a 18 × 512

matrix of the averaged latents for the non-target or non-selected

faces. The directional vector matrix,A, for a particular subject, i,

can be computed as,

Ai = Ai − Bi

This directional matrix can be applied to the averaged neither

latent matrix, N ∈ R
m x n, to compute a starting point of an

individual’s mental representation of the target trait,

Mi = Ni + Ai

Finally, when the directional vector matrix is multiplied by

a constant, C, the mental representation image, Mic, can be

estimated at varying intensities,

Mic = Ni + Ai C

The extrapolated mental representations exemplify the

individual’s internal prototypes for the particular trait measured

at various levels of intensity.

We computed individual classification images for each of

our participants following the procedure outlined above. If

participants did not categorize any faces as “neither,” a random

sample of 20 faces were drawn from the pool of 300 faces and

averaged together as a proxy starting point in the latent space.

Experiments utilizing different random subsets of images did not

meaningfully change the visual results of the output images.

Participants

Eleven participants (Mage= 36, SDage= 5.24) were recruited

to complete the study via CloudResearch. Participants self-

identified as the following: 6 women, 5 men; 8 White, 1 Black,

1 Asian, and 1 Middle Eastern or North African. Six participants

were assigned to the “trustworthy/untrustworthy” condition and

five participants to the “masculine/feminine” condition. One

participant categorized all images as “trustworthy” and was
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thus not included in our analyses. Two participants did not

categorize any face as “neither,” though “neither” selections

were low across both conditions (Mmasculine/feminine = 6.8%,

Mtrustworthy = 10.6%). This study was reviewed and approved

by the Institutional Review Board at the authors’ institution.

All participants agreed to take part in this study and were

compensated $5 for completing the study.

Participant procedure

Participants were instructed that they would be shown

several hundred face images and would be asked to categorize

each face into one of three categories depending on which

condition they were assigned. Participants were also instructed

to take a moment to imagine what a trustworthy/masculine and

untrustworthy/feminine face looked like to them (depending on

the condition to which they were assigned).

Next, participants completed the main portion of the

experiment whereby they categorized each face. During each of

the 300 trials, participants were presented with a face toward the

center of the screen along with each of the three categories listed

beneath the face. Participants were instructed to use the number

keys to make their selection (1 = “trustworthy”/“masculine,”

2 = “untrustworthy”/“feminine,” and 3 = “neither,” as was

appropriate for their assigned condition). After completing

this portion of the experiment, participants answered a basic

demographic questionnaire (e.g., listing their age, race, and

gender) and were debriefed.

Results and discussion

Figure 4 presents the results from each of the ten participants

in our study at several levels of target trait intensity. Individual

mental representations were computed following the steps

outlined in the Method section. Through experimentation

we determined that the directional vector within the latent

space could be extrapolated with constants between −8 and

+8 without degrading the clarity of the internal face portion

of the image or collapsing the latent space (i.e., creating

an unrecognizable image). Visual inspection of the produced

images suggests that changes between models become readily

apparent beginning at +/−4 from the center (or averaged

“neither”) starting image. Hence, we suggest that internal

prototypes should be examined at values +/−4 or greater to

secure an adequate visual representation for each individual

mental representation.

Visual inspection of these results confirms the face validity

of our proposed procedure. Specifically, individuals assigned

to the “trustworthy/untrustworthy” condition yielded visualized

mental models of faces that appeared happier andmore feminine

for trustworthy (positive constant values) as well as angrier/stoic

and more masculine for untrustworthy (negative constant

values). Participants assigned to the “masculine/feminine”

condition yielded visualized mental models of faces that

appeared more masculine (positive constant values) as well as

more feminine (negative constant values).

While interpreting results from such a small sample of

participants warrants caution, there are a few additional aspects

of the current results that deserve discussion. For one, it is

interesting that prototypical, toothy smiles still occurred at

the extremes of perceived trustworthiness despite the neutral

appearance of all the stimuli that participants categorized. This

pattern of results suggests that overt, robust physical features

are still able to be derived from faces that only incidentally

resemble them.

Most importantly in terms of idiosyncratic contributions

to judgments, participants’ mental representations of extremely

trustworthy faces varied dramatically in physical appearance

(e.g., presenting as both “male” and “female” and at differing

ages), underscoring the idiosyncrasies of how each participant

imagines “trustworthy” in their mind’s eye. Conversely, the

mental representations of “masculine” and “feminine” at the

extremes appear quite similar in physical appearance (e.g.,

all appearing feminine with round faces and long hair),

underscoring agreed upon characteristics for these judgments.

Critically, and in line with our hypotheses, average

correlations among the trustworthy/untrustworthy

latents [r−8(8)= 0.53, r8(8)= 0.54] were lower than

the average correlations among the masculine/feminine

latents [r−8(8)= 0.82, r8(8) = 0.84] at both extremes.

Lower correlations among participants in the

“trustworthy/untrustworthy” condition suggest that they

had more idiosyncratic mental representations for what

they considered trustworthy compared to participants in the

“masculine/feminine” condition. Similarly, higher correlations

among participants in the “masculine/feminine” condition

suggest that they had more shared representations of what they

considered masculine or feminine.

Discussion

In the present work we highlight the importance of

understanding both shared and idiosyncratic contributions

to the variance of social judgements. That is, how much

of the variance in social judgment ratings can be explained

by stimulus-level features (i.e., shared) vs. participant-level

preferences (i.e., idiosyncratic). Emerging research suggests

that both levels explain an important amount of variance,

though the proportion of variance explained by each level

appears to be influenced by the type of judgment. For example,

shared contributions to judgements of first-order, lower-level

judgments such as perceived “masculinity” or “femininity”

appear to be larger than idiosyncratic contributions. On the
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B

FIGURE 4

(A) Visualizes the mental representations for each participant in the “trustworthy” condition. (B) Visualizes the mental representations for each

participant in the “masculine” condition. Each row represents a single participant. Each column visualizes mental representations when the

directional vector is applied to the average of all faces that were selected as “neither” (0) multiplied by specific constants (−8 to +8).

other hand, second-order, higher-level judgments such as

perceived “trustworthiness” or “attractiveness” seem to be better

explained by idiosyncratic contributions.

While emerging work has demonstrated the importance

of understanding contributions to judgments at multiple

levels of interest, there has yet to be a method for visually

capturing high-fidelity individual mental representations. Here,

we attempt to fill this gap by introducing a novel, data-driven,

and hyper-realistic method for visualizing individual mental

representations of perceived attributes inferred from (or

ascribed to) faces. We leverage current machine learning

technology to create a set of photorealistic face stimuli,

each of which is manipulable along a specific directional

vector of interest. For example, our pipeline can compute

directional vectors of a perceived attribute, such as perceived

“trustworthiness,” at the participant level, which can then be
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applied to an averaged base face to visualize how an individual

represents prototypical “trustworthy” (and anti-trustworthy)

faces in their mind’s eye.

We conducted a proof-of-concept study utilizing

our proposed method whereby we had participants

create directional vectors (i.e., mental representations) of

“un/trustworthy” and “masculine/feminine” faces. Inspection

of our results confirms the face validity of our procedure.

Specifically, those assigned to create “trustworthy” mental

representations produced face images that appeared happier,

younger, and more feminine. Likewise, those assigned to

the “masculine/feminine” condition produced face images

with sexually dimorphic characteristics (see Figure 4).

More importantly, and in line with our predictions, there

was much more agreement in the images produced for

feminine/masculine-looking faces (a first-order judgment)

compared to un/trustworthy-looking faces (a second-order

judgment). Such effects were expected given previous work

on differential variance contributions to specific types of

social judgments.

While correlations between feminine/masculine latents

were higher than those between trustworthy/untrustworthy

latents, it should be noted that the correlations between

trustworthy/untrustworthy latents were still relatively high

(r = 0.5). These moderate correlations may be due to a number

of causes, including “shared” characteristics among created

images (e.g., smiling), the entanglement of StyleGAN2 latent

space, or the relatively low sample size. One potential cause for

moderate correlations among the trustworthy/untrustworthy

latents is that many of the trustworthy/untrustworthy images

share common features, such as frowning or smiling, which

would likely be reflected in a similar pattern among the image

latents. Similarly, the StyleGAN2 latent space is known to be

entangled, i.e., each latent alters more than one visual attribute

as its value changes (Wu et al., 2021). The entangled latent space

may result in moderately correlated latents even when they are

sampled at random. Finally, we may have observed moderate

correlations between the trustworthy/untrustworthy latents due

to our sample size. It is likely that all three factors are influencing

the relationship between the created image latents and future

work should aim at detailing how the latents are related and

when highly correlated patterns emerge.

In sum, our proposed pipeline for producing mental

representations of social judgments of faces produces high

quality, photorealistic visualizations of prototypes at the

individual level. Our methodology advances how individual

mental representations can be visualized in several important

ways. First, our procedure allows for researchers to estimate

individual prototypes at various levels of intensity. Our

technique allows us to take any number of categorizations and

build a vector to move through the latent space in a given

direction that represents that individual’s internal prototype.

Second, our procedure produces high-fidelity images. The

resultant images are photo-realistic and indistinguishable in

most cases from non-computer generated images. These images

can then be rated by human participants or passed to additional

machine learning applications that measure facial attributes

or metrics. A method that results in a face image that is

indistinguishable from a real face allows for participants to

provide an unbiased estimate of the stimulus. Similarly, a face

that appears realistic can be interpreted by other machine

learning algorithms which would allow additional benefits

afforded by them, such as facial landmarks estimation as well as

face identification, sex/gender, ethnicity, age, emotion, texture,

and color estimation. These additional results would not be

possible with lower resolution images.

Finally, higher resolution/fidelity images allow for

researchers to identify more subtle differences that can

occur across social judgments at the individual level. For

example, the images created through our procedure in the

anti-masculine (feminine) condition resulted in prototypes

that globally looked similar but still differed in minor ways

such as hair style, gaze, and mouth curvature. Such differences

would likely be indistinguishable when the resultant image is of

lower resolution.

Future work

While our preliminary study provides compelling proof-of-

concept visualizations, it is important to follow up this work with

additional research to confirm the validity of our methodology

and determine any boundary conditions that might exist. We

identify four important next steps that we plan to undertake to

confirm our mental representation pipeline: (1) validate created

mental representations by both the creator and naive raters,

(2) replicate our results with more participants across a more

diverse set of target attributes and judgments; (3) determine the

importance of the underlying distribution of faces used to create

stimuli; (4) determine the influence of the number of trials on

the outcome image.

A critical and missing step in our pipeline is the validation

of the individual models. Following the logic of previous

validation studies of consensus judgments (Todorov et al., 2013;

Todorov and Oh, 2021), participants’ judgments should be more

sensitive to differences between faces manipulated by their own

model than differences between faces manipulated by models of

other participants. Specifically, if the intensity of the perceived

attribute is manipulated at multiple levels, the slopes of

participants’ judgments should be steeper for faces manipulated

by their own model than by models of other participants.

However, we would expect the magnitude of this effect to be

attenuated if the judgment of interest is first-order and thus

more likely to have higher inter-individual agreement. Further,

validating the image transformations via ratings from a group

of naive participants would also provide insight into whether

the generated mental representation images are consensually

interpreted as the judgment of interest. In summary, validation
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by both the classification image creator and other raters is an

important validation step for fully understanding the unique

contributions of both idiosyncratic and shared variance in face

judgments for this proposed methodology.

Second, it is important to establish that our methodology

provides consistent and replicable results across a diverse

set of target perceived attributes. In our pilot study we

provided evidence that our procedure works for both first

order and second order judgments of perceived attributes.

However, a more diverse portfolio of social judgments that

can be visually derived from our pipeline would only

further confirm its validity. While we only tested two social

judgments and a handful of participants, the results were

visually striking. As such, we are confident that studies with

additional participants and attributes will provide equally

satisfying results.

Third, it is important to understand the effect of the

underlying pool of real face images used to provide a

foundation for the generated stimuli. In the current pilot

we were not concerned with a balanced underlying pool

of faces and instead opted to secure a pool of as many

high resolution and standardized neutral faces as possible.

Therefore, the underlying distribution of faces used to create

our experimental stimuli were unbalanced in terms of race,

sex/gender, age, and ethnicity. While the social judgments we

selected to examine in our pilot study are less likely to be

influenced by such imbalances, other target categories that can

be examined through our procedure will likely need stimuli

drawn from an underlying balanced face distribution. For

example, if a researcher is interested in determining whether

perceived emotion differs between mental representations of

specific ethnic categories, the underlying distribution of faces

that the stimuli are created from needs to be balanced in

terms of the target ethnicities. A balanced underlying face

set would allow for experimental stimuli to be drawn from

(or around) an ethnically-ambiguous base face and reduce

any unintentional bias that might result from an unbalanced

stimulus set.

Finally, the number of trials used in our procedure

needs to be experimentally examined to determine a minimal

number of trials to produce optimal images. Based on previous

work utilizing reverse correlation in social psychology, we

determined that our pilot study should use 300 experimental

trials. While 300 trials produced visually appealing results,

the number of trials could also be increased or decreased to

achieve equal or better results. If the number of experimental

trials could be reduced while still producing comparable

visual results, it would reduce experiment duration and

help reduce participant fatigue. Similarly, if increasing the

number of trials could increase the final mental prototype

image fidelity, it would produce higher quality results. Either

way, understanding the optimal number of experimental

trials is critical for operationalizing a final procedure for

our methodology.

Conclusion

It is unlikely that two individuals will judge the same person

identically on how trustworthy, attractive, or dominant they

appear. Even if these two individuals did agree on a numeric

value, it is even more unlikely that they would agree upon the

reasons why they arrived at such conclusions. The only way

to truly understand what physical features in a face individuals

use to inform their impressions is to visually capture what they

imagine for any given social judgment prototype. Until now,

such possibilities were limited to low-fidelity, pixelated, avatar

representations of faces or self-reports. Now, by leveraging state-

of-the-art computer vision, we have provided a methodology

for visualizing high-fidelity mental representations of social

attributes inferred from faces at the individual participant level.

Our work represents a critical advance in understanding how

social judgements are formed and how they can dramatically

differ or remain consistent from individual to individual.
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