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Abstract The environment is dynamic, but objects move in
predictable and characteristic ways, whether they are a dancer
in motion, or a bee buzzing around in flight. Sequences of
movement are comprised of simpler motion trajectory ele-
ments chained together. But how do we know where one
trajectory element ends and another begins, much like we
parse words from continuous streams of speech? As a novel
test of statistical learning, we explored the ability to parse
continuous movement sequences into simpler element trajec-
tories. Across four experiments, we showed that people can
robustly parse such sequences from a continuous stream of
trajectories under increasingly stringent tests of segmentation
ability and statistical learning. Observers viewed a single dot
as it moved along simple sequences of paths, and were later
able to discriminate these sequences from novel and partial
ones shown at test. Observers demonstrated this ability when
there were potentially helpful trajectory-segmentation cues
such as a common origin for all movements (Experiment 1);
when the dot’s motions were entirely continuous and uncon-
strained (Experiment 2); when sequences were tested against
partial sequences as a more stringent test of statistical learning
(Experiment 3); and finally, even when the element tra-
jectories were in fact pairs of trajectories, so that abrupt
directional changes in the dot’s motion could no longer signal

inter-trajectory boundaries (Experiment 4). These results sug-
gest that observers can automatically extract regularities in
movement — an ability that may underpin our capacity to
learn more complex biological motions, as in sport or dance.

Keywords Statistical learning . Visual perception .Motion
perception

Picture a dancer in fluid motion. The stream of choreographed
action is comprised of simpler movements strung together to
convey emotions, intentions or stories. Our environment is
filled with such sequences of meaningfully dynamic stimuli,
and we must parse their component motions to understand
them and respond accordingly. For example, parsing con-
tinuous movement is relevant in training for sports (Hossner
et al., 2015; Romeas & Faubert, 2015), analyzing gestures
(Goldin-Meadow & Beilock, 2010; Roseberry et al., 2011),
and ultimately, in facilitating expression and communication
(Goldin-Meadow, 2000).

But how do we perceive and segment complex and fluid
patterns of movement? While complex movements can be
thought of as sequences of simpler actions, it remains an open
question how humans segregate dynamic events into mean-
ingful parts. Studying dynamic sequences can be difficult be-
cause we lack a vocabulary for the basic units of movement.
Here, we ask whether continuously dynamic stimuli can be
understood as sequences of element motion trajectories.

We propose that statistical regularities underlie the parsing
and learning of meaningful sequences from continuous com-
plex movements. Just as speech is comprised of a continuous
stream of words (objects), which in turn are strings of sylla-
bles, dynamic motion can be viewed as a continuous stream of
meaningful trajectory sequences (objects), which in turn are
strings of elemental motion trajectories. Statistical learning is
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proposed to be the mechanism by which infants (Saffran,
Aslin, & Newport, 1996) and adults (Saffran, Johnson,
Aslin, & Newport, 1996) can segment words within continu-
ous speech. Speech segmentation is difficult because there are
no acoustic cues or temporal gaps that can reliably signal
where one word ends and another begins (Cole & Jakimik,
1980). Despite this lack of acoustically invariant cues to word
boundaries, words can be parsed based on the transitional
probabilities between speech sounds (i.e., the conditional
probability that one sound follows another). For example, in
a seminal study, 8-month-old infants were presented with a
sample speech stream made up of a seemingly random se-
quence of syllables (e.g., Bbi-da-ku-pa-do-ti-go-la-bu-bi-da-
ku- …^). This sequence was actually not entirely random,
but contained Bwords^ made up of triplets of syllables repeat-
ed throughout the stream (namely Bbidaku,^ Bpadoti,^ and
Bgolabu^). After only 2 min of exposure to such a stream,
infants were able to significantly discriminate the Bwords^
embedded within the sequence from Bnon-words^ (i.e., other
triplets of syllables they had never heard before), as well as
Bpart-words^ (i.e., triplets that combined syllables from dif-
ferent words). This is because the transitional probabilities of
syllables within words (e.g., Bbi^ to Bda^) were higher than
the probabilities of those between words (e.g., Bku^ to Bpa^)
(Saffran, Aslin, et al., 1996).

Further work suggests that statistical learning may be a
domain-general learning mechanism (Kirkham et al., 2002),
capable of operating under different contexts and in other
sense modalities. Statistical learning paradigms have demon-
strated that we can automatically parse visual sequences of
shapes to extract temporal regularities in the world (Fiser &
Aslin, 2002). In such visual statistical learning (VSL) para-
digms, speech sounds (such as Bpa^ or Bbo^) played in a
continuous stream are substituted for simple shapes (such as
squares or crosses).

While VSL paradigms convincingly demonstrate that
humans can perform statistical learning in the visual domain,
such sequences of discrete shape stimuli are not direct ana-
logues to continuous speech. In looking at relationships be-
tween shapes across time, each shape is clearly separate from
the other— that is, the next shape does not arise from a smooth
morphing of the previous shape, but enters as a new object
right after another disappears from view. This deviates from
continuous speech paradigms that are often devoid of pauses or
other segmentation cues between syllables and words.

Therefore, a more direct visual analogue of continuous
speech would be a continuously moving object with complex
trajectories. While other studies have tried to study continuous
biological motion with complex hand gestures (Roseberry et
al., 2011), dance sequences (Opacic et al., 2009), or other
dynamic action sequences (Baldwin et al., 2008; Meyer &
Baldwin, 2011), they used biologically significant stimuli with
which people already have a great deal of experience. Here,

we distill the statistical learning and segmentation of dynamic
motion input down to its maximally sparse form: a moving
dot. We ask if participants can implicitly learn Bword^ se-
quences of moving dot trajectories.

Experiment 1

In this first experiment, we developed a basic motion trajec-
tory Balphabet^ as input for a movement statistical learning
paradigm. Our procedures then followed Fiser and Aslin’s
(2002) seminal visual statistical learning paradigm as closely
as possible. This first experiment tested if people could learn
triplets of trajectories just as they can learn triplets of shapes
(Fiser & Aslin, 2002).

Method

Participants

Twelve naïve participants (a number chosen to be in line with
past statistical learning studies, such as Fiser & Aslin, 2002)
were recruited using Amazon’s Mechanical Turk (MTurk) on-
line labor market (for discussion of this pool’s nature and
reliability, see Crump et al., 2013). Each participant took part
in a single session lasting approximately 26 min on average.
On completion of the task, they were given a small monetary
reward of US$1.50, and were excluded from repeat participa-
tion in this (or any related) study.

Apparatus

The experiment was conducted using the Qualtrics online sur-
vey platform (http://www.qualtrics.com) and custom software
written using PHP, Javascript, CSS, and HTML. Worker ID
screening was implemented via TurkGate (Goldin & Darlow,
2013) to ensure that individuals could not participate more
than once or in any related studies. Because our experiment
required the use of a relatively large display and the viewing of
embedded videos, mobile devices such as phones and tablet
computers were disallowed, and attempts to access the exper-
iment from such a device led to its immediate termination
along with an error message. Before the experiment began,
each participant also completed a simple browser compatibil-
ity check to ensure that their system was able to process the
required animations and response measures, and only partici-
pants who passed that check were allowed to continue.

Stimuli

Animations were presented as embedded videos in .mp4 for-
mat near the center of the display (800 px by 600 px) at a rate
of 60 frames/s. Individual frames of the animations were
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created using MATLAB and the Psychophysics Toolbox
(Brainard, 1997), and then compiled into movies using
Adobe Photoshop. Each animation was presented against a
uniform black background, and consisted of a sequence of
motion trajectories performed by white discs presented one
at a time. Animations always began with a white disc (20 px
diameter) which appeared at the center of the video display for
one frame, then moved continuously against a uniform black
background along a given motion trajectory at a speed of 4 px/
frame for 1 s (or 60 frames). The moving disc always moved
away from and back toward the center along the same path in
both directions. This way, the disc never disappeared and al-
ways began any given trajectory from the center. Thus, the
resultant percept was of a single object continuously moving
the entire time.

Each disc’s motion was constrained to an Balphabet,^ or
repertoire, of 12 different 1-s-long motion trajectories. The
basic alphabet is composed of directional trajectories, moving
in a linear path for the cardinal directions of north, south, east,
and west, and a curvilinear path for the inter-cardinal (or sec-
ondary) directions of northeast, northwest, southeast, and
southwest, giving us a total of 12 trajectories (see Fig. 1a).
To create motion sequences for our animations, the 12 motion
trajectories were first randomly grouped into four Bbase^ trip-
lets—that is, sets of three distinct trajectories which always
appeared one after the other in the same order, as shown in
Fig. 1b. Another four sets of Bimpossible^ triplets—that is,
sets of three distinct trajectories that were never shown to
participants in sequence during the experiment’s Blearning^
animations, which are described in more detail below—were
also generated. These two kinds of triplets were then used to
create two categories of animations—learning animations and
test animations.

Learning animations In learning animations, the base triplets
were chained together to create a pseudo-random 96-triplet
sequence, with the only constraints being that (1) no immedi-
ate repetitions of a triplet were allowed (e.g., ABCABC), and

(2) no immediate repetitions of a pair of triplets were allowed
(e.g., ABCDEFABCDEF). This semi-random generation of
the motion sequences ensured that all motion trajectories and
all base triplets appeared an equal number of times in the
learning sequences. Consequently, the joint probability of
any given base triplet was .083, and the joint probability of
any sequence of three element trajectories spanning triplets
was .027, mirroring the probability of shape and shape triplet
presentations in Fiser and Aslin (2002). A total of three such
learning sequence animations— each lasting 9 min 46 s, and
which always began with a single frame showing a white
fixation cross — were generated and randomly assigned to
participants.

Test animations In test animations, each of the four base
triplets was paired with each of the four impossible triplets
in two different orders to yield 32 test pairs which were pre-
sented in a forced-choice task phase of the experiment. In each
test pair video, the number B1^ first appeared at the center of
the video frame for 1 s, followed by the first triplet, then the
number B2^ appeared at the center of the video for 1 s, follow-
ed by the second triplet, and finally, a blank background.

Procedure

Participants were shown one of the three ≈10-min learning
sequence animations (randomly assigned across participants)
and were instructed to view the movie such that they would be
able to answer questions about what they saw. No other in-
structions were included that might hint at the predetermined
patterns of the trajectories. See Fig. 2 for depictions and links
to the learning animations. After watching the movie, partic-
ipants then completed a series of two alternative forced-choice
questions comparing 32 pairs of trajectory sequences, each
pair containing one base triplet and one impossible triplet in
some random order. Participants were instructed to judge
which of the two triplets was more familiar based on the
learning sequence movie they had watched, choosing either

a b c

Fig. 1 a A depiction of the motion trajectory Balphabet^ created for our
statistical learning paradigm. This alphabet was used across all
experiments, and the disc’s motion was constrained to follow some
sequence of the linear and curvilinear paths shown. b A sample set of
four base triplets shown during the learning phase of the experiment.

Each base triplet is composed of three different trajectories from the
motion alphabet, chosen at random. c A sample set of four Bimpossible^
triplets — random motion sequences which were never shown to
participants during the learning stage. These are again composed solely
of trajectories from the motion alphabet
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the first or the second triplet displayed by means of radio
buttons presented in a different random order below the video
for each trial. No time limit was imposed for responses.

Results

Twelve participants successfully discriminated base trip-
lets from impossible triplets (M = 68.75 %, SD = 16.43 %),
t(11) = 3.95, p = .002, d = 1.14. Thus, participants were capa-
ble of parsing patterns from a continuous stream when track-
ing a single constantly moving object with a fixed trajectory
origin. Because the movement here was continuous without
any perceptual breaks, these results demonstrate participants’
ability to recognize patterns from a continuous stream that is
more analogous to continuous speech.

Experiments 2a and 2b

Experiment 1 tested movement sequences with trajectories
that were constrained to always begin from the center of the
screen. However, in the real world, moving objects are typi-
cally not constrained to return to a fixed origin. More critically
here, the common center point for all movements in the pre-
vious experiment may have served as a perceptual cue for the
boundaries of element trajectories (although not sufficient to
parse triplet trajectories, dependent on statistical learning). In
order to test the limits of statistical learning of continuous
movement, we removed this constraint and allowed the single
moving object to roam around the screen.

Method

The design and procedure were identical to that used in
Experiment 1 except where noted. Here, each participant took
part in a single session lasting 19 min on average, and com-
pared to the previous experiments, they earned a slightly

larger compensation of US$2.14. The same primary and sec-
ondary directional motions from the last two experiments
were used, except that here, a blue disc (rather than a white
disc) now appeared at the center of the screen for one frame,
and subsequently roamed around a textured background gen-
erated from random visual white noise. Trajectories were un-
constrained in their starting position, and as such, the disc did
not return to the screen’s center between trajectories, instead
moving continuously around the frame.

To ensure that the disc would remain visible and never
leave the screen despite its pseudo-random continuous mo-
tion, the disc travelled at a slower speed of 3 px/frame, while
each element trajectory now lasted for 30 frames, or 500 ms.
Learning animations lasted a total of 2 min 24 s.Whenever the
disc’s next position would come close to the border of the
display (i.e., within 50 px of the screen’s edge), the frame
was adjusted to follow the disc, so that the disc always
remained visible as it continued to move. The textured back-
ground helped give the impression of a camera tracking the
object (this impression can be confirmed via visual inspection
of the following video, also referenced in Fig. 2c: http://
camplab.psych.yale.edu/demos/Exp2and3.mp4). This
Btracking^ procedure entailed adjusting the disc’s position at
a speed of 3 px/frame back toward the center of the video
frame while the textured background was adjusted in the op-
posite direction that disc moved, again at the same speed (3
px/frame). In the test animations, the first test triplet would be
displayed via a disc starting from the center of the screen,
followed by a 1-s blank screen inter-stimulus interval, and
finally the second test triplet would be displayed with another
disc starting from the center of the screen again.

We performed two versions of this experiment —
Experiments 2a and 2b — due to a forced Bupdate^ in the
way Qualtrics handled the custom Javascript used to control
the videos. Whereas in the other experiments Qualtrics would
load the custom Javascript for video playback on a page-by-
page basis, under this new scheme all the Javascript for the
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EXPERIMENT 1 EXPERIMENTS 2 & 3 EXPERIMENT 4
Fig. 2 A depiction of the stimulus’ motion in Experiments 1–4. a In
Experiment 1, the disc first traveled away from, and then back toward
the center of the video frame for each trajectory in the sequence,
producing a percept of continuous motion (http://camplab.psych.yale.
edu/demos/Exp1.mov); b In Experiments 2 and 3, the disc traveled
around the screen without being forced to return to a given point

onscreen at any time (http://camplab.psych.yale.edu/demos/Exp2and3.
mp4); c In Experiment 4, the disc traveled around the screen like in
Experiments 2 and 3, but this time, with abrupt breaks in every letter of
the triplet (http://camplab.psych.yale.edu/demos/Exp4.mp4). Mean
performance in each experiment is depicted below the relevant panel;
all were significantly above chance
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entire experiment was loaded once at the outset. As a result,
this Bupdate^ caused problems with test pair presentation for a
subset of participants, as revealed by examining participants’
debriefing questionnaires.

In response to these problems, we developed a second ver-
sion of the experiment (i.e., Experiment 2b) in which we sim-
ply added a third option for each of the questions in the test
phase of the experiment: BThe video did not play properly.^
This allowed participants to report any problems with video
playback for each video shown, and allowed us to further
ensure that all test pairs properly played for all 12 participants
to be included in the final analyses for each experiment. In
Experiment 2a, two out of 14 participants were excluded,
while in Experiment 2b, five out of 17 participants were ex-
cluded because of one or more self-reported issues with video
playback.

Results

In Experiment 2a, participants successfully discriminated base
triplets from impossible triplets (M = 57.03%, SD = 10.67 %),
t(11) = 2.28, p = .043, d = .66.We also obtained similar results
in Experiment 2b where participants successfully discriminat-
ed base triplets (M = 59.11%, SD = 11.50%), t(11) = 2.75, p =
.019, d = .79, and so we opted to combine the data from the
two independently samples for further analysis. The combined
sample (24 participants) again showed successful discrimina-
tion of base triplets from impossible triplets (M = 58.07 %,
SD = 10.90 %), t(23) = 3.63, p = .001, d = .74. These
results demonstrate participants’ ability to detect implicit
patterns even when the object is engaged in truly continu-
ous movement.

Mean performance in this freely moving object paradigm
was significantly lower than the mean performance in
Experiment 1, where the object moved continuously while
constrained to return to the center (58.07 % vs. 68.75 %;
t(34) = 2.33, p = .026, d = .80).

Experiment 3

To provide an even more stringent test of the statistical learn-
ing of movement demonstrated above, we tested recognition
for base triplets versus Bpart-base^ triplets — Baccidental^
combinations of trajectories that span the boundary between
two base triplets. Such Bpart-base^ triplets were made up of
the final trajectory of one base triplet, and the first two trajec-
tories of a second base triplet. Unlike Bimpossible^ triplets,
these Bpart-base^ triplets were in fact seen occasionally over
the course of the video, but they violate the fully intact struc-
ture that distinguishes base triplets from one another. This is
therefore a more robust test of statistical learning, because suc-
cessful performance requires sensitivity to the full underlying

structure of the learned triplets (Baldwin et al., 2008; Saffran,
Aslin, et al., 1996).

Method

The design and procedure were identical to that used in
Experiment 2b, except as noted below. Each participant once
again participated in a single session lasting 12.5 min on av-
erage, and compared to the previous experiments, they were
compensated US$2.85. However, in the test phase, instead of
impossible triplets, base triplets in the learning phase were
paired with part-base triplets. Following the procedures used
in previous statistical learning experiments (e.g., Baldwin et
al., 2008; Saffran, Aslin, et al., 1996), these part-base triplets
were formed by combining the final letter of a given base
triplet with the first two letters of a second base triplet. In this
way, four unique part-base triplets were constructed, in which
(1) each base triplet’s final trajectory was represented once,
and (2) each base triplet’s final two trajectories were repre-
sented once. See Fig. 3 for a representation of the base and
part-base triplets from this experiment.

Results

Participants successfully discriminated base triplets from
part-base triplets (M = 55.08 %, SD = 10.34 %), t(23) =
2.41, p = .025, d = .49. This experiment confirms that par-
ticipants extracted the full statistical structure of the base
triplets shown throughout the learning animation. Mean per-
formance in this experiment was not significantly different
from that in Experiment 2 (55.08 % vs. 58.07 %; t(46) =
.98, p = .334, d = .28) but was once again significantly
lower than mean performance in Experiment 1 (55.08 %
vs. 68.75 %; t(34) = 3.06, p = .004, d = 1.05).

Experiment 4

In prior experiments, trajectory letters may have been parsed
or individuated via a correlated cue — the low-level changes
in velocity that emerged between individual motions (i.e., mo-
tion breaks, or angular discontinuities). It is worth noting that
such correlated cues are also present in natural speech (e.g.,
transitions between syllables are correlated with changes in
prosody). Although not sufficient to parse triplets, which re-
quire statistical learning, the discontinuities between elements
may have aided the learning of sequences. Thus, to further test
the robustness of the statistical learning of continuous move-
ment, Experiment 4 disrupted letter segmentation by introduc-
ing motion breaks within the letters themselves. We
redesigned our base triplets so that each Bletter^ here was in
fact a pair of trajectories from the movement alphabet. This
allowed us to generate letters that have motion discontinuities,
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yielding animations that increased the demands on statistical
learning to not only parse triplets, but the letters themselves
(see Hunt & Aslin, 2001).

Method

The design and procedure were identical to that used in
Experiment 2b, except as noted below. The single experimen-
tal session now lasted 18.4 min on average. Triplets were
made up of motion letters that had discontinuities within them,
designed by putting two motion trajectories together with the
following constraints: (1) no letter should appear as a contin-
uous, smooth motion (e.g., two trajectories that form a semi-
circle cannot go together); (2) no trajectory should be repeated
within a letter; and (3) no trajectory should be followed by its
opposite, reverse trajectory (i.e., the second trajectory must
not follow the same path of the first in reverse; although such
trajectories have a motion break, the reversal was visually
salient). Hence, instead of triplets being composed of one
trajectory per letter (e.g., A-B-J), each triplet was now com-
posed of two trajectories per letter (e.g., EA-BL-CJ). To equate
the probability of any given element trajectory appearing, each
such trajectory only appeared twice across the four bases. Each
element trajectory was still 500ms long, making each letter 1 s
in duration.

Results

Participants successfully discriminated base triplets with
abrupt breaks within the letters themselves, (M = 54.04 %,
SD = 9.05 %), t(23) = 2.18, p = .039, d = .45. These results
show that people can parse out motion regularities from the
continuous learning sequence even when the element motions
themselves required statistical learning, since discontinuities
in motion were present both within and between letters. Mean

performance in this experiment was significantly lower than
the mean performance in Experiment 1 (54.04 % vs. 68.75 %;
t(34) = 3.48, p = .001, d = .99; also significant at p = .012
when correcting for unequal variances as revealed by Levene’s
test, F(1,31) = 4.32, p = .045), once again suggesting greater
difficulty in parsing out regularities in a freely moving object
paradigm versus one where the disc is constrained to the cen-
ter. However, mean performance was not significantly differ-
ent from mean performance in Experiment 2 (54.04 % vs.
58.07 %; t(46) = 1.40, p = .170, d = .40) or Experiment 3
(54.04 % vs. 55.08 %; t(46) = .37, p = .712, d = .11).

General discussion

Using an Balphabet^ of basic elements of movement combined
into continuously dynamic sequence Bobjects,^ our four exper-
iments newly demonstrated the ability to parse movement se-
quences using statistical learning. Across all four experiments,
which provided increasingly stringent tests of statistical learn-
ing andmotion segmentation, participants identified embedded
trajectory sequences that could only be differentiated based on
statistical learning of transitional probabilities.

Just as words can be extracted from continuous speech with-
out temporal gaps to signal perceptual boundaries (Saffran,
Aslin, et al., 1996; Saffran, Johnson, et al., 1996), there were
no gaps between element trajectories in the experiments, which
both made use of a single continuously moving disc.
Statistical learning of dynamic motion patterns in these exper-
iments indicates that motion trajectories may serve as percep-
tual objects (Scholl, 2001), and that such dynamic objects can
be learned and parsed from otherwise continuous input.
Understanding trajectories as perceptual objects can be related
to event (Zacks & Tversky, 2001) and gesture (Goldin-
Meadow, 2000) processing, given that they also need to be

1 ABG

a b

3 EIJ

4 FKL

2 HDC

4 LAB

3 JFK

2 CEI

1 GHD

Fig. 3 a A sample set of four base triplets shown during the learning
phase of the experiment. Each base triplet is composed of three different
trajectories from the motion alphabet, chosen at random. b A sample set
of four Bpart-base^ triplets which were created by combining the final

letter of a base triplet (shown here with a white background) with the first
two letters of another base triplet (shown here with a light-blue/light-grey
background)
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parsed from continuous input. Our study presents such dy-
namic objects without the possible confound of semantics or
intentionality that events and gestures tend to have.

Considering motion trajectories as perceptual objects raises
several questions surrounding object-based attention selection
and capacity. First, one could ask whether some types of mo-
tion trajectories are learned and parsed more easily than
others. For example, would animacy cues enhance statistical
learning and parsing of dynamic sequences?

Statistical learning performance was highest for
Experiment 1, but did not differ across Experiments 2, 3,
and 4. This suggests that statistical learning of movement is
robust across increasing levels of continuity (absent helpful
discontinuities) – only improved by the overt segmentation
cues in Experiment 1 that involved all trajectories returning
to a common origin point. Future parametric work can char-
acterize the perceptual variables that affect the efficacy of
trajectory parsing.

Does the manner and efficacy with which we learn and
parse dynamic patterns influence the way we perform other
more complex activities? Statistical learning of moving ob-
jects has implications for event comprehension, memory and
problem solving. Studies have shown that event segmentation
creates breakpoints for memory encoding and facilitates the
recognition of event sequences for future action planning
(Kurby & Zacks, 2008). Statistical learning of motion se-
quences can therefore be crucial in appreciating or training
for dance or sports. It can influence the emotions one feels
and remembers from watching a dancer, or determine how an
athlete can perform a better tennis or golf swing by breaking
complicated motion sequences into manageable parts.

In conclusion, the present experiments demonstrate the sta-
tistical learning of structures in truly continuous motion pat-
terns. Our results highlight a mechanism by which humans
may learn more complex biological motions or event se-
quences, suggesting a new approach to understanding motion
as perceptual objects, and to consider the ways parsing move-
ment might impact how we perceive (and perform in) the
continuously dynamic world around us.
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