
Running head: CAPTURING AND MODIFYING FACE TRAITS 1

Capturing and modifying the perceived traits of all possible faces

Joshua C. Peterson1*, Stefan Uddenberg2,3, Thomas L. Griffiths1,4, Alexander

Todorov2,4, Jordan W. Suchow5

1Department of Computer Science, Princeton University
2Booth School of Business, University of Chicago

3Princeton Neuroscience Institute, Princeton University
4Department of Psychology, Princeton University

5School of Business, Stevens Institute of Technology

*Corresponding author

Email: joshuacp@princeton.edu

Keywords: Face Perception, Generative Neural Networks



CAPTURING AND MODIFYING FACE TRAITS 2

Abstract

The diversity in appearance of human faces and their naturalistic viewing conditions

give rise to an expansive stimulus space over which humans perceive numerous

psychological traits (e.g., perceived trustworthiness). Current scientific models

characterize only few of these traits, and over only a tiny fraction of possible faces. Here

we show that generative image models from machine learning combined with over 1

million human judgments can capture more than 30 traits over a near-infinite set of face

stimuli. This makes it possible to then seamlessly infer and manipulate the

psychological traits of arbitrary face photograph inputs and generate infinite synthetic

photorealistic face stimuli along those dimensions. The predictive accuracy of our model

approaches human inter-rater reliability, which our simulations suggest would not have

been possible with previous datasets having fewer faces, fewer trait ratings, or using

low-dimensional feature representations.
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Capturing and modifying the perceived traits of all possible faces

Faces are among the most important stimuli that people encounter—they are

recognized by infants long before other objects in their environment (Farzin, Hou, &

Norcia, 2012), recruit specialized circuits in the brain (Kanwisher, McDermott, & Chun,

1997), and are fundamental to social interaction (Frith, 2009). Central to our

experience with faces are the psychological traits which we assign to them, often

implicitly. These include traits that are “read off”, describing largely objective aspects

of faces (e.g., age, adiposity), and those that are “read into”, such as how trustworthy a

person seems (Oosterhof & Todorov, 2008). Though the inferences of the latter traits

are more subjective and generally inaccurate, they are similarly psychologically

consistent across people (Oosterhof & Todorov, 2008; C. A. Sutherland et al., 2013;

Zebrowitz, 2017) around the globe (C. A. M. Sutherland et al., 2018; Todorov & Oh,

2021) and have important consequences (Todorov, Olivola, Dotsch, & Mende-Siedlecki,

2015) ranging from electoral success (Little, Burriss, Jones, & Roberts, 2007; Todorov,

Mandisodza, Goren, & Hall, 2005) to sentencing decisions (Blair, Judd, & Chapleau,

2004; Eberhardt, Davies, Purdie-Vaughns, & Johnson, 2006). Because any face can be

judged with respect to such traits, these psychological dimensions are universal in that

they are implicitly defined over the space of nearly all possible faces, contexts, and

observation conditions, a highly diverse landscape of stimuli. For this reason, capturing

this psychological content in its entirety, which both forms the basis of scientific models

of face perception and defines the scope of downstream applications such as training

people to overcome stereotypes (Bohil, Kleider-Offutt, Killingsworth, & Meacham,

2020), is a challenging task.

Given the importance of face trait perception, numerous techniques for scientific

modeling of faces have proliferated, which can be broadly organized into two basic

approaches. The first includes those that extrapolate from face photographs, often

related via landmark annotations (Tiddeman, Stirrat, & Perrett, 2006; Turk &

Pentland, 1991). The second includes those that employ artificial faces using parametric

3D face meshes (Blanz & Vetter, 1999). Photographs offer greater realism, but are
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limited by small datasets of face stimuli that serve as the basis for interpolation, as well

as the interpolation algorithms themselves. Artificially generated faces are not subject

to these limitations, but incur a high cost in diversity and realism. Neither of these

approaches captures the richness and diversity of human faces. In recent years, machine

learning methods have emerged which learn to model faces from massive databases of

face photographs scraped from photo repositories online (Karras, Laine, & Aila, 2018;

Karras et al., 2020; Parkhi, Vedaldi, & Zisserman, 2015). These methods provide a

third option for developing scientific models of faces, providing expressive feature

representations for arbitrary realistic face images. However, relating these

representations to human perception is difficult because they are extremely

high-dimensional vectors produced via black-box optimization algorithms (O’Toole,

Castillo, Parde, Hill, & Chellappa, 2018).

We show that the key to unlocking the scientific potential of these models, as well

as downstream applications, are large-scale datasets of human behavior not previously

attainable using traditional laboratory experiments. In particular, such large datasets

provide sufficient evidence to determine the robust mapping between expressive

high-dimensional representations from machine learning models and human mental

representations of face traits. This mapping could be computed for any meaningful

psychological trait. We focus on three types of traits: relatively objective characteristics

such as age and adiposity, subjective characteristics such as perceived “trustworthiness”,

and even more subjective characteristics such as “familiarity.” We exploit this mapping

to manipulate psychological perception of these traits for arbitrary face images, allowing

us for example to increase or decrease the likely perceived “trustworthiness” of a

person’s image.

To this end, we used online crowdsourcing to obtain (perceived) trait ratings for

just over 1,000 naturalistic face stimuli for 34 traits (at least 30 ratings from unique

participants per trait and per stimulus), for a total of 1,020,000 human judgments.

These perceived traits, especially the more subjective ones, have no necessary

correspondence to the actual identities, attitudes, or competencies of the persons
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depicted (e.g., a trustworthy person may be wrongly assumed to be untrustworthy

because of their appearance). Instead, our measurements capture systematic biases and

stereotypes about traits shared by the population of raters. A detailed summary of

these ratings and inter-trait relationships is provided in the supplement.

To explore the structure of the overall trait space, we first computed the

correlation between the mean face ratings for each pair of traits, the results of which are

shown in Figure 2. Many traits were highly correlated, including happy-outgoing

(r = .93) and dominant-trustworthy (r = −.81), while others are largely unrelated,

including smart-attractive (r = .01), smart-trustworthy (r = .02), smart-skinny/fat

(r = −.02), and skinny/fat-trustworthy (r = −.02). Although some of these correlations

are consistent with prior findings, many are not (Todorov & Oh, 2021). For example,

though judgments of trustworthiness and dominance tend to be negatively correlated,

the magnitude of the correlation is generally small (Oh, Dotsch, Porter, & Todorov,

2020). Similarly, judgments of smartness or competence tend to be highly positively

correlated with judgments of attractiveness and trustworthiness. This apparent

discrepancy is due to the fact that most other face datasets include only adult faces. In

fact, the correlational structure of judgments of children’s faces is different from the

structure of judgments of adult faces (Collova, Sutherland, & Rhodes, 2019). However,

we find only limited support for this hypothesis (see Fig. S10 in the supplement).

To model each trait, we start with the high-dimensional representation vectors

zi = {z1, ... , zd} assigned to each face i in our stimulus set using a state-of-the-art

generative adversarial network (GAN) (Goodfellow et al., 2014; Karras et al., 2018,

2020), a model that has learned a mapping from each such vector to an image through

extensive training on a large database of faces. We then model each psychological trait,

measured via average trait ratings yi as a linear combination of features:

yi = w0 + w1z1 + ...+ wdzd, where the vector of weights wk = {w1, ... , wd} represents

trait k as a linear dimension cross-cutting through the overall representation space and

is fit using cross-validated, L2-regularized linear regression. Average cross-validated

(i.e., out-of-sample) model performance for each trait is reported in Figure 1. Prediction
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for most traits was reasonably successful, with most R2 values ranging from above 0.5

to almost 0.8, with traits typical and familiar being the exceptions.

Because participants partly disagree in their appraisals of each face (Martinez,

Funk, & Todorov, 2020), perfect prediction is not possible. To estimate the resulting

prediction ceiling, and thus better understand the performance of our models, we also

computed reliability scores for each trait by estimating the extent to which human

participants agree. In particular, we compute the split-half reliability for each trait by

averaging the squared correlations between the averages of 100 random splits of the

ratings for each image. In all cases, we found these reliability scores to be close to the

prediction performance of our models, albeit higher, indicating that better prediction is

possible. Interestingly, our model of familiarity showed the smallest gap between

performance and reliability, indicating that the small R2 value is not due to a poor

model or input features. Instead, it seems more likely that familiarity more than other

traits is based on both a shared concept or experience (determining what can be

systematically predicted across different participants), and a much larger personal

concept or experience (which can only be predicted at the level of individuals). This is

corroborated by the similar effect for the trait looks like you, which can only be

predicted at the aggregate level to the extent that our participant pool shares broad

facial features.

Next, we investigated the relationship between the number of faces rated and

predictive performance (Fig. S11 in the supplement, left panel). Performance curves

were generated by fitting models for each of 30 random samples of images with sizes

ranging from 100 to 1,000. Interestingly, significantly fewer images than most traits

were required to best capture the trait feminine/masculine. For all other traits, adding

additional images always improves performance, indicating that at least 1,000 images

are required to capture most traits for naturalistic faces. Next, we investigated the

relationship between the number of ratings (i.e., unique participants) obtained for each

face image and predictive performance (Fig. S11 in the supplement, center panel).

Performance curves were generated by fitting models for each of 30 random samples of
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unique ratings for each image with sizes ranging from 5 to 30. Aside from traits

feminine/masculine and age, which elicit less disagreement, performance increases as

the number of ratings increases for all traits. This indicates that at least 30 ratings are

required to best capture most traits. Gains due to the number of ratings are

diminishing, but at a slower rate than gains due to the number of faces (Fig. S11 in the

supplement, left panel). Finally, we investigated the relationship between the number of

image features (512 total) and predictive performance. Results are shown in the the

right panel of Fig. S11 in the supplement. Performance curves were generated by fitting

models using reduced feature sets obtained via principal components analysis, varying

the dimensionality between 10 and 512. In all cases, performance saturates

quickly—around 100 principal dimensions—but is improved marginally with more

dimensions in some cases. This indicates that at least 100 dimensions of the latent

feature space are required to adequately capture psychological traits for faces.

Next, we apply our model to the manipulation of the psychological traits of input

faces. Since the learned trait vectors correspond to linear dimensions, we can

manipulate an arbitrary face represented by features zi with respect to trait k using

vector arithmetic: zi + β ×wk, where β is a scalar controlling the positive or negative

modulation of the trait. We apply a symmetric range of β around 0 to each trait vector

to manipulate a series of base face representations in both the negative and positive

directions, and decode the results for visualization using the decoder/generator

component of the neural network that was also used to derive representations (see

supplement for more details). The results are shown in Fig. 3, and reveal strikingly

smooth and effective manipulations along each trait dimension. For example,

modulating trustworthiness in the given examples increases eye contact with the

camera, degree of smiling, and alters face shape and facial hair. Trait manipulation

involves more than one appearance dimension. For example, increasing smartness may

involve adding glasses and/or changing facial expression. Increasing outgoingness

increases smiling as expected, but also gives glasses a more rounded and cartoonish

appearance. Other dimensions allow for greater extrapolation. For example, faces can
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be made much skinnier or fatter than any examples in our dataset, yet still maintain a

realistic appearance. Faces with strongly manipulated happiness also resemble

convincing caricatures.

We set out to develop a comprehensive model of trait perception that can

psychologically interpret and manipulate nearly any possible face image. With no

explicit featurization or interpolation algorithm, we were able to accomplish this in a

fully data-driven manner with relatively high accuracy and generalization. We provided

strong quantitative evidence that large datasets of both face stimuli and intra-stimulus

ratings are necessary to achieve this. Our qualitative results speak for themselves,

resulting in convincing psychological trait manipulations of realistic face photos using

simple vector arithmetic. Moreover, our pipeline provides a general formula for

capturing any psychological trait that can be measured via image annotations. Further,

because the models of traits are in the same multi-dimensional space, their similarity is

immediately given, allowing for testing of specific hypotheses about the relation

between psychological traits, predicting novel traits based on their relationships with

models of existing traits, and controlling for shared variance between traits.

Importantly, while the primary goal of this work is to support scientific modeling

and productive application, the model developed here and many possible extensions of

it introduce a new class of ethical concerns. In particular, the manipulation of arbitrary

faces, especially along dimensions such as perceived trustworthiness, has the potential

for malicious use, and it is precisely the innovations we offer in this work that drastically

simplify such efforts. We argue that such methods (as well as their implementations and

supporting data) should be made transparent from the start, such that the community

can develop robust detection and defense protocols to accompany the technology.

Modern data-driven methods from machine learning provide new tools for

representing and manipulating complex, naturalistic stimuli, but are not explicitly

designed to model or explain human mental representations. However, applying the

same “big data” philosophy to behavioral experiments allows us to align these powerful

models with human perception. The model that we explore in this paper can in turn be
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used to broaden the range of behavioral data we can collect, as it defines an infinite set

of realistic and psychologically controlled stimuli for a new generation of behavioral

experiments. It is our hope that the scientific community can leverage this new resource

and more general method to further increase the scope of computational psychology.

Methods

Stimuli

Our face stimuli were 1,004 synthetic yet photorealistic images of highly diverse

and naturalistic faces curated from a larger set that was generated using StyleGAN2

(Karras et al., 2018, 2020), a state-of-the-art Generative Adversarial Network (GAN).

In particular, the model we utilized was pretrained by its authors on the

Flickr-Faces-HQ Dataset (Karras et al., 2018), comprising 70,000 high-quality images at

a resolution of 1024×1024 pixels. Images generated by this model are rendered at the

same resolution, and largely reflect its diversity. Additional details of these stimuli and

our curation protocol are provided in the supplement.

Participants

We recruited a total of 12,043 workers from Amazon Mechanical Turk, 11,655 of

which (approximately 97%) met our criteria for inclusion (see Data Quality section).

Participants identified their gender as “female” (5,675) or “male” (6,230). The

remaining participants either preferred not to say (104) or did not have their gender

listed as an option (34). The mean age was approximately 41 years old. Participants

identified their race/ethnicity as either “White” (8,681),“Black/African American”

(974), “Latinx/a/o or Hispanic” (475), “East Asian” (641), “Southeast Asian” (245),

“South Asian” (255), “Native American/American Indian” (58), “Middle Eastern” (24),

“Native Hawaiian or Other Pacific Islander” (6), or some combination of 2 or more

races/ethnicities (576). The remaining participants either preferred not to say (80) or

did not have their race/ethnicity listed as an option (28).
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Procedure

We used a between-subjects design where participants evaluated faces with

respect to each trait. Participants first consented and were additionally required to

complete a pre-instruction agreement to answer open-ended questions at the end of the

study. They were then given 25 examples of face images to provide a sense of the

diversity they would encounter during the experiment, and were instructed to rate a

series of faces on a continuous slider scale where extremes were bipolar descriptors such

as “trustworthy” to “not trustworthy”. We did not supply definitions of each trait to

participants, and instead relied on participants’ intuitive notions for each.

Each participant then completed 120 trials for the single attribute to which they

were assigned. 100 of these trials comprised random unique images from the full set,

and the remaining 20 trials were repeats of earlier trials (selected randomly from the

100 unique trials) which we used to assess intra-rater reliability. We ensured that each

unique stimulus in the full set was judged by at least 30 unique participants.

At the end of the experiment, participants were given a survey documenting what

participants thought we were assessing, self-assessment of performance, feedback on any

potential points of confusion, as well as demographic information such as age, race, and

gender. Participants were given 30 minutes to complete the entire experiment, but most

completed in under 20 minutes. Each participant was paid $1.50.
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Figure 1 . Model performance (R2) for each trait compared to inter-subject reliability.
Black bars show average 10-fold cross-validation performance models for each trait. Red
markers show split-half reliability: average squared correlations between 100 random
splits of the rating data for each trait. Red bars show the shortfall of each of our models.
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Figure 2 . Correlation matrix for 34 average trait ratings for each of 1,000 faces. Rows
and columns are arranged according to a hierarchical clustering of the signed correlation
values.
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Figure 3 . Manipulation of two base faces along sample trait dimensions.
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Supplementary Information for

“Capturing and modifying the perceived traits of all possible faces”

Supplemental Methods

Additional Stimulus Details

Our experiments make use of 1,004 synthetic yet photorealistic images of faces

generated using StyleGAN2 (Karras, Laine, & Aila, 2018; Karras et al., 2020), a

state-of-the-art Generative Adversarial Network (GAN) architecture, hereafter referred

to as SG2. The generator network component of SG2 models the distribution of face

images conditioned on a 512-dimensional, unit-variance, multivariate normal latent

variable. When a vector is sampled from this distribution and passed through the

network, it is mapped to a second, intermediate 512-dimensional representation (for

which the distribution is unknown), which is in turn fed to multiple layers and

ultimately mapped to an output image resembling those from the dataset on which the

model was trained. Thus, either of the two 512-dimensional representations can be used

for our modeling applications, each associating one fully descriptive (latent) feature

vector with each face. We use the latter representation throughout since it yielded

superior results in all of our analyses. Specifically, we utilize these representations from

a pretrained model supplied by the authors that was trained on Flickr-Faces-HQ

Dataset (Karras et al., 2018), containing 70,000 high-quality images at a resolution of

1024×1024 pixels. Images generated by this model are rendered at the same resolution.

The synthetic faces generated by SG2 are diverse and convincingly realistic in

most cases, but can occasionally contain visual artifacts that appear odd or even

jarring. We minimized these artifacts in our dataset using two strategies. First, SG2

employs a parameter ψ for post-training image generation that bounds the norm of each

multivariate input sample and, as a result, trades off between sample diversity and

sample quality. We set ψ to 0.75, which by inspection appeared to jointly maximize the

criteria for our purposes. Second, we manually inspected and filtered the generated

images, removing all instances that contained obviously distorted faces, multiple faces,
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hands, localized blotches of color, implausible headdress, or any particularly notable

visual artifact. Specifically, we sampled approximately 10,000 512-dimensional normal

vectors, fed them through the generator network of SG2 to obtain 10,000 candidate face

stimuli for our dataset, and took the first ~1,000 that met the criteria for quality.

Random examples from the stimulus set are provided in the supplement.

Facial Trait Model Details

To broadly capture human face trait perception, we want a model that can

accurately reproduce human judgments about the traits of natural faces. More formally,

we seek a function φ(·)P E (what we call a “psychological encoder”) that maps from any

possible face stimulus xi = {x1, ... , xm} (i.e., m-dimensional vectors of raw pixel

intensities) to a given psychological trait (average judgment for face xi):

φ(xi)P E = yi. (1)

We further define φ(·)P E as a decomposition of functions:

φ(x)P E = φ(φ(x)F )S, (2)

where φ(xi)F = zi = {z1, ... , zd} is a rich feature representation of face stimulus xi, and

φ(·)S maps these features to psychological dimensions of interest. This formulation

allows us to leverage state-of-the-art neural networks to featurize arbitrary, complex

face images. We explain this function in more detail later in this section.

We then relate these features zi to psychological ones, assuming that φ(·)S is a

linear function, and thus implying that each psychological trait is a 512-dimensional

(potentially sparse) vector in the overall feature space (we provide support for this

assumption later). We learn the function φ(·)S from our human trait judgment data. In

particular, given continuous-scale trait judgments (i.e., degree of trustworthiness on a

scale from 1 to 100), we use linear regression to map 512-dimensional feature vectors zi
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to average trait ratings yi:

yi = φ(zi)S = w0 + w1z1 + ...+ wdzd. (3)

In both cases, weight vector wk = {w1, ... , wd} represents a single trait k as a linear

factor. Therefore, at the heart of our model is a matrix W ∈ IRk×d, a set of

d-dimensional linear factors for each of k psychological traits, each obtained by fitting

separate linear models.

The above components of our model allow for predictions of traits to be made for

arbitrary face stimuli, but we would also like the flexibility to manipulate these traits

for a given face. Since we represent each trait as a vector wk in the feature

representation space, we can manipulate each face in this space (i.e., represented by zi)

using vector addition:

z′i = zi + β ×wk, (4)

where z′i is the new transformed face and β is a scalar parameter that controls the

strength of the transformation, which can be positive or negative. When β = 0, z′i = zi,

and no transformation takes place. In other words, β scales the trait vector that is

added to the given face representation. Finally, in order to generate a new stimulus

corresponding to our transformation, the inverse featurizer (i.e., decoder/generator

network of SG2) φ−1(·)F is employed to map from features zi back to a face stimulus xi,

such that manipulation of face images can be fully described by:

x′i = φ−1(z′i)F = φ−1(zi + β ×wk) = φ−1(φ(xi)F + β ×wk), (5)

where x′i is the trait-transformed version of input face xi.

The success of the above formulation (i.e., good prediction of human trait

judgments for arbitrary faces) is highly dependent on the choice of the feature encoder

φ(·)F , which allows us to abstract over raw pixels and provides the basis for modeling

traits. If the features are not rich enough, we will fail to make good predictions of
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human trait judgments. Likewise, the ability of the inverse function φ−1(·)F to generate

face stimuli given their feature representations determines whether trait-transformed

face stimuli will successfully avoid the uncanny valley effect. There are many modern

neural networks that could make for a good choice of featurizer φ(·)F . For example,

convolutional neural networks, which learn hierarchies of translation-invariant features,

can be trained to classify faces to a high level of accuracy, and their hidden

representations can be taken as a feature representation z. However, this method does

not yield an inverse from features back to stimuli, and attempts for inverting models

after the fact often introduce artifacts (Dosovitskiy & Brox, 2016).

Instead, we start with a model that is primarily aimed at the inverse problem

alone. Generative adversarial networks are a form of deep latent variable model that

learn to model a distribution of images using two components: a “generator ” network

that generates images by mapping Gaussian noise to (synthetic) images, and a

“discriminator” network that discriminates between real and generated data. When

trained correctly in a way that balances the two components, the discriminator network

forces the generator to produce realistic images, and the discriminator can no longer

distinguish between real and fake ones. SG2, previously described in the stimulus

generation section, is one of the most successful applications of this model structure and

training paradigm to date, having implemented several key improvements that yield

highly convincing results (see examples in Fig. 2).

Importantly, SG2 yields only the inverse function φ(xi)−1
F , a learned convolutional

“generator” or “decoder” function which maps from features to images. In order to

apply our model to arbitrary face images outside of our set of 1, 004, inverting this

function is required. While the authors supply their own solution to this problem, we

find that it is not accurate enough for our purposes. Instead, we define our encoder

function and featurizer φ(xi)F as an optimization process which searches for the vector

input to SG2 via gradient descent that produces an output image like the one we want

to featurize. This likeness is defined as euclidean distance in the feature space of

another external convolutional network pretrained to recognize faces (Parkhi, Vedaldi,
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& Zisserman, 2015). Additionally, because this process is slow, we initialize the image

encoding vector using a first-pass approximation from yet another convolutional neural

network that we trained to regress thousands of SG2 image samples to the output

vectors that generated them. This encoder is much less accurate, but much faster, and

drastically speeds convergence of the slower and more accurate decoding process

outlined above.

To summarize, we model a set of psychological traits (e.g., trustworthiness) over a

large possible space of naturalistic face stimuli as vectors in a rich feature space

provided by a deep generative neural network. This allows us to generalize trait

predictions to arbitrary new face stimuli, modulate traits for any face stimulus, and

generate new stimuli with estimated traits.

Model Fitting & Generalization

All linear regression models were fit using the least squares algorithm. Since

image feature representations (i.e., vectors of predictors in the design matrix) are

high-dimensional, there is a significant risk of overfitting, which could potentially result

in sub-optimal or meaningless model solutions. To address this, we use ridge regression,

which penalizes solutions wk that have a large euclidean distance from the 0 vector.

The strength of this penalty and its influence on the resulting solution is controlled by a

free parameter λ. We search for the optimal value of this parameter based on the

generalization performance of the model, specifically using 10-fold cross-validation. In

the following results, all reported model scores are averages over those for each of the 10

folds, such that we never report performance on data that was used to fit our models.

Supplemental Results

Data Quality

Intra-rater (i.e., test-retest) reliability was reasonably high on average across all of

the tested traits, as shown in Table 1 (keeping in mind that each observer re-rated 20%

of all seen stimuli). Most individual participants showed high levels of reliability, as can
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be seen in Figure 3’s left skew. Participants were not included in the models if their

intra-rater reliability was below 0. Due to this conservative exclusion criterion, only

4.7% of all participants tested were excluded from our trait models. The traits eliciting

the lowest reliability (although still reasonably high) were familiarity and typicality,

while those eliciting the highest were less subjective traits such as age and gender. All

other traits had a mean reliability above 0.6.

Trait Ratings and Inter-Trait Relationships

Figures 5 through 9 show the faces with the ten highest and ten lowest mean

ratings for each perceived trait. Selections for less subjective traits such as age,

fat/skinny, and feminine/masculine are straightforward, although there are some

interesting observations. For example, the most masculine-looking men are not

necessarily the most dominant-looking ones, who tend to look younger and have

stronger jawlines. More subjective traits also show clear patterns. Consistent with prior

findings, children’s faces look more trustworthy (Berry & McArthur, 1985, 1986;

Montepare & Zebrowitz, 1998), while straight-faced masculine-looking faces with

sunglasses appear least trustworthy. Feminine-looking faces were rated as more

attractive (Said & Todorov, 2011), while older masculine-looking faces wearing glasses

were rated as the least attractive. Faces rated as especially smart also often wore glasses

(Sutherland et al., 2013), but appeared young to middle-aged, while the most

outgoing-looking faces were often smiling. Finally, even perceived traits with the lowest

intra-rater reliability in the full set are reasonably interpretable. For example, young to

middle-aged white masculine-looking faces were rated as more typical, while less typical

faces were more diverse in terms of their race and gender. This is to be expected, given

the fact that our MTurk sample reflected the demographics of the platform at large,

and was therefore predominantly white. Feminine-looking faces were judged as looking

more familiar, while less familiar faces were also more diverse. Our goal is to model the

full extent of these effects, and not just what can be inferred qualitatively from

inspecting such examples.
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Perceived Trait Median Reliability % Participants Excluded
trustworthy 0.734 5.895
attractive 0.799 3.207
dominant 0.786 3.106
smart 0.740 4.615
age 0.955 0.303
fem./masc. 0.937 4.050
skinny/fat 0.778 0.000
typical 0.656 4.969
happy 0.867 1.286
familiar 0.520 16.393
outgoing 0.782 1.905
memorable 0.691 3.115
well groomed 0.794 1.274
long hair 0.933 0.322
smug 0.746 2.160
dorky 0.740 4.334
skin color 0.874 0.629
hair color 0.918 0.625
alert 0.697 2.532
cute 0.873 0.000
privileged 0.763 3.145
liberal 0.724 2.769
Asian 0.904 0.637
Middle Eastern 0.811 0.943
Hispanic 0.807 0.000
Pacific Islander 0.847 1.558
Native American 0.812 2.950
Black 0.894 7.599
white 0.919 0.312
looks like you 0.826 7.207
gay 0.721 4.545
electable 0.869 1.572
believes in God 0.674 2.839
outdoors 0.870 0.645

Table 1
Intra-rater test-retest reliability for all participants and participant exclusion statistics
for each of the collected traits.
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Figure 1 . General pipeline for modeling arbitrary psychological traits. Encodings either
for generated face images or real ones inferred via our encoding models can be
manipulated using traits learned in the same vector space as the encodings.
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Figure 2 . Random example stimuli from our dataset of 1,000 curated synthetic face
images generated using StyleGAN2 (Karras et al., 2018, 2020) for use in all of our
experiments.



CAPTURING AND MODIFYING FACE TRAITS 12

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

trustworthy

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

dominant

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

smart

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

attractive

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

cute

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

outgoing

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

happy

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

memorable

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

familiar

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

typical

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

looks like you

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

smug

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

dorky

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

privileged

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

liberal

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

electable

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

believes in God

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

gay

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

well groomed

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

long hair

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

hair color

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

skin color

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

Asian

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

Black

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

Hispanic

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

Middle Eastern

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

Native American

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

Pacific Islander

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

white

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

age

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

fem./masc.

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

skinny/fat

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

alert

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Intra-rater reliability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ili

ty

outdoors

Figure 3 . Intra-rater reliability distributions for each measured trait.
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Figure 4 . Distribution of raw responses given by participants for images rated along
each trait. Boxplots at the center of each distribution represent the median as a
white/black dot (depending on the contrast), the interquartile range as the thick
opposite-colored line, and the remainder of the distribution (sans outliers) as the
thinner lines (i.e., the "whiskers").
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Figure 5 . Ten most and ten least congruent faces (highest/lowest mean ratings) for
traits trustworthy, dominant, smart, attractive, cute, outgoing and happy.
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Figure 6 . Ten most and ten least congruent faces (highest/lowest mean ratings) for
traits memorable, familiar, typical, looks like you, smug, dorky, and privileged.
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Figure 7 . Ten most and ten least congruent faces (highest/lowest mean ratings) for
traits liberal, electable, believes in God, gay, well groomed, long haired, and hair color.
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Figure 8 . Ten most and ten least congruent faces (highest/lowest mean ratings) for
traits skin color, Asian, Black, Hispanic, Middle Eastern, Native American, Pacific
Islander, and white.
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Figure 9 . Ten most and ten least congruent faces (highest/lowest mean ratings) for
traits age, feminine/masculine, skinny/fat, alert, and outdoors.
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Figure 10 . Correlations between average traits ratings as a function of age for three
pairs of traits. The blue curves plot correlations for faces less than or equal the age
threshold on the x-axis. The orange curves plot correlations for faces greater than the
threshold on the x-axis. The green curves plot correlations for faces within a sliding
10-year window around the values on the x-axis. For the trait pair
trustworthy-dominant (top left), the correlation is only affected at very young or very
old ages. For trustworthy-smart (top right), the correlation increases up to ages around
approximately 25, and then decreases again. For attractive-smart (bottom), the
correlation becomes larger and more positive for older ages.
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Figure 11 . Model performance (R2) for each trait as a function of the number of face
examples (left), the number of participant ratings for each face example (middle), and
the number of image feature dimensions (right).
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